		-	an anata Charlet Ch	
USN				15AU34
	FEET 8			

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Mechanics of Materials**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

With usual notations derive an expression 1

$$dL = \frac{4PL}{\pi E d_1 d_2}$$
 for uniformly tapering circular section.

(06 Marks)

b. A copper bar shown in figure is subjected to a tensile load of 30kN. Determine the elongation of the each bar if $E = 1 \times 10^5 \text{ N/mm}^2$. (10 Marks)

OR

a. With usual notation derive $E = 3K(1-2\mu)$.

b. In an experiment, a bar of 30mm diameter is subjected to a pull of 60kN. The gauge length is 200mm, elongation is 0.09mm and change in diameter is 0.0039mm. Calculate the Poisson's ratio and value of the three modulii. (10 Marks)

Module-2

- Define Principal planes, Principal stresses and explain their uses.
 - b. The stresses at a point in a component are 100MPa (tensile) and 50MPa compressive. (06 Marks) Determine the magnitude of normal and shear stresses on a plane inclined at an angle of 25° with tensile stress. Also determine the direction of the resultant stress and the magnitude of the maximum intensity of shear stress. (10 Marks)

OR

- a. Deduce the expressions for circumferential and longitudinal stresses developed in thin cylinder due to internal pressure.
 - b. A cylindrical vessel 2m long and 500mm in diameter with 10mm thick plates is subjected to an internal pressure of 3MPa. Calculate the changes in volume of the vessel. Take $E = 2 \times 10^5 \text{N/mm}^2$. And Poisson's ratio = 0.3 for vessel material. (10 Marks)

Module-3

a. Give different types of beams and loads. b. Define Shear force and Bending moment.

(04 Marks)

c. A simply supported beam AB of span 2.5m long is carrying two loads at C & D. Given AC = 1m and BD = 1m. Load at C & D are 2 kN and 4kN. Determine the S.F and BM at A, (08 Marks)

OR

a. Deduce the relation $\frac{\sigma_b}{Y} = \frac{M}{I} = \frac{E}{R}$ with the assumptions made in the derivation. (08 Marks)

b. A timber beam of rectangular section supports a load of 20kN uniformly distributed over a span of 3.6m. If depth of the beam section is twice the width and maximum stress is not to (08 Marks) exceed 7MPa, find the dimensions of the beam section.

Module-4

a. Explain the terms Torsion and Polar modus.

(06 Marks)

b. A solid shaft is subjected to a torque of 1.6kNm. Find the necessary diameter of the shaft, if the allowable shear stress is 60MPa. The allowable twist is 1° for every 20 diameters length (10 Marks) of the shaft. Take C = 80GPa.

OR

a. What do you understand by column and strut? Explain their failure. (08 Marks)

b. A hollow alloy tube 4m long with external and internal diameters of 40mm & 25mm respectively was found to extend 4.8mm under a tensile load of 60kN. Find the buckling load for the tube with both ends pin jointed. Also find the safe load on the tube, taking a (08 Marks) factor of safety as 5.

ii) Resilience iii) Proof resilience a. Define the following: i) Strain energy (04 Marks) iv) Modulus of resilience.

b. Derive an expression for strain energy stored in a body applied with a gradually applied load.

c. Calculate the strain energy stored in a bar 2m long, 50mm wide and 40mm thick when it is (06 Marks) subjected to a tensile load of 60kN. Take E = 200GPa.

OR

10 a. Enumerate different theories of failures.

(02 Marks)

b. Explain maximum principal stress theory and maximum shear stress theories. Give their (14 Marks) applications.

* * * * *